很多老鸟都不知道这些浮点数基础知识

很多老鸟都不知道这些浮点数基础知识来源:https://dwz.cn/ZQv439bl# 一个有趣的实验本文从一个有趣而诡异的实验开始,最早这个例子是 Stackoverflow上的一个问题:https://stackoverflow.

大家好,欢迎来到IT知识分享网。

来源:https://dwz.cn/ZQv439bl 

# 一个有趣的实验

本文从一个有趣而诡异的实验开始,最早这个例子是 Stackoverflow上的一个问题:

https://stackoverflow.com/questions//why-does-changing-0-1f-to-0-slow-down-performance-by-10x

为了提高可读性,对代码稍作修改,简化成了以下两段代码:

很多老鸟都不知道这些浮点数基础知识

很多老鸟都不知道这些浮点数基础知识

上面两段代码的唯一差别就是第一段代码中y+=0.1f,而第二段代码中是y+=0。 由于y会先加后减同样一个数值,照理说这两段代码的作用和效率应该是完全一 样的,当然也是没有任何逻辑意义的。假设现在我告诉你:其中一段代码的效率 要比另一段慢7倍。想必读者会认为一定是y+=0.1f的那段慢,毕竟它和y+=0相 比看上去要多一些运算。但是,实验结果,却出乎意料, y+=0的那段代码比 y+=0.1f足足慢了7倍。世界观被颠覆了有木有?博主是在自己的Macbook Pro上进行的测试,有兴趣的读者也可以在自己的笔记本上试试。 (只要是支持SSE2指令集的CPU都会有相似的结果)。 世界观被颠覆了有木有? 

博主是在自己的Macbook Pro上进行的测试,有兴趣的读者也可以在自己的笔记本上试试。(只要是支持SSE2指令集的CPU都会有相似的结果)。

 shell> g++ code1.c -o test1 shell> g++ code2.c -o test2 shell> time ./test1 real 0m1.490s user 0m1.483s sys 0m0.003s shell> time ./test2 real 0m9.895s user 0m9.871s sys 0m0.009s 本着知其然还要知其所以然的态度,博主做了一个详尽的分析和思路整理过程。也希望读者能够从0开始解释这个诡异现象的原因。 

# 复习浮点数的二进制转换

现在让我们复习大学计算机基础课程,如果你熟练掌握了浮点数向二进制表达式转换的方法,那么你可以跳过这节。

我们先来看下浮点数二进制表达的三个组成部分。

很多老鸟都不知道这些浮点数基础知识

三个主要成分是:

  • Sign(1bit):表示浮点数是正数还是负数。0表示正数,1表示负数。
  • Exponent(8bits):指数部分。类似于科学技术法中的M*10^N中的N,只不过这里是以2为底数而不是10。需要注意的是,这部分中是以2^7-1即127,也即0代表2^0,转换时需要根据127作偏移调整。
  • Mantissa(23bits):基数部分。浮点数具体数值的实际表示。

下面我们来看个实际例子来解释下转换过程。

Step 1 改写整数部分 以数值5.2为例。先不考虑指数部分,我们先单纯的将十进制数改写成二进制。整数部分很简单,5.即101.。

Step 2 改写小数部分 小数部分我们相当于拆成是2^-1一直到2^-N的和。

例如:0.2 = 0.125+0.0625+0.007825+0.00即2^-3+2^-4+2^-7+2^-8….,也即.000

Step 3 规格化 现在我们已经有了这么一串二进制101.000。然后我们要将它规格化,也叫Normalize。

其实原理很简单就是保证小数点前只有一个bit。于是我们就得到了以下表示:1.0 * 2^2。

到此为止我们已经把改写工作完成,接下来就是要把bit填充到三个组成部分中去了。

Step 4 填充 指数部分(Exponent):之前说过需要以127作为偏移量调整。因此2的2次方,指数部分偏移成2+127即129,表示成填入。

整数部分(Mantissa):除了简单的填入外,需要特别解释的地方是1.010011中的整数部分1在填充时被舍去了。因为规格化后的数值整部部分总是为1。

那大家可能有疑问了,省略整数部分后岂不是1.010011和0.010011就混淆了么?

其实并不会,如果你仔细看下后者:会发现他并不是一个规格化的二进制,可以改写成1.0011 * 2^-2。

所以省略小数点前的一个bit不会造成任何两个浮点数的混淆。

具体填充后的结果见下图

很多老鸟都不知道这些浮点数基础知识

# 什么是Denormalized Number

了解完浮点数的表达以后,不难看出浮点数的精度和指数范围有很大关系。最低不能低过2^-7-1最高不能高过2^8-1(其中剔除了指数部分全0和全1的特殊情况)

如果超出表达范围那么不得不舍弃末尾的那些小数,我们成为overflow和underflow,甚至有时舍弃都无法表示

例如当我们要表示一个:1.00001111*2^-7这样的超小数值的时候就无法用规格化数值表示,如果不想点其他办法的话,CPU内部就只能把它当做0来处理。

那么,这样做有什么问题呢?最显然易见的一种副作用就是:当多次做低精度浮点数舍弃的后,就会出现除数为0的exception,导致异常。

当然精度失准严重起来也可以要人命,以下这个事件摘自wikipedia:

On 25 February 1991, a loss of significance in a MIM-104 Patriot missile battery prevented it intercepting an incoming Scud missile in Dhahran, Saudi Arabia, contributing to the death of 28 soldiers from the U.S. Army’s 14th Quartermaster Detachment.[25] See also: Failure at Dhahran

于是乎就出现了Denormalized Number(后称非规格化浮点)。他和规格浮点的区别在于,规格浮点约定小数点前一位默认是1。而非规格浮点约定小数点前一位可以为0,这样小数精度就相当于多了最多2^22范围。

但是,精度的提升是有代价的。由于CPU硬件只支持,或者默认对一个32bit的二进制使用规格化解码。因此需要支持32bit非规格数值的转码和计算的话,需要额外的编码标识,也就是需要额外的硬件或者软件层面的支持。

以下是wiki上的两端摘抄,说明了非规格化计算的效率非常低。一般来说,由软件对非规格化浮点数进行处理将带来极大的性能损失,而由硬件处理的情况会稍好一些,但在多数现代处理器上这样的操作仍是缓慢的。

极端情况下,规格化浮点数操作可能比硬件支持的非规格化浮点数操作快100倍。

For example when using NVIDIA’s CUDA platform, on gaming cards, calculations with double precision take 3 to 24 times longer to complete than calculations using single precision.

如果要解释为什么有如此大的性能损耗,那就要需要涉及电路设计了,超出了博主的知识范围。当然万能的wiki也是有答案的,有兴趣的读者可以自行查阅。

# 回到实验

总上面的分析中我们得出了以下结论:

  • 浮点数表示范围有限,精度受限于指数和底数部分的长度,超过精度的小数部分将会被舍弃(underflow)
  • 为了表示更高精度的浮点数,出现了非规格化浮点数,但是他的计算成本非常高。

于是我们就可以发现通过几十上百次的循环后,y中存放的数值无限接近于零。CPU将他表示为精度更高的非规格化浮点。

而当y+0.1f时为了保留跟重要的底数部分,之后无限接近0(也即y之前存的数值)被舍弃,当y-0.1f后,y又退化为了规格化浮点数。并且之后的每次y*x和y/z时,CPU都执行的是规划化浮点运算。

而当y+0,由于加上0值后的y仍然可以被表示为非规格化浮点,因此整个循环的四次运算中CPU都会使用非规格浮点计算,效率就大大降低了。

# 其他

当然,也有在程序内部也是有办法控制非规范化浮点的使用的。在相关程序的上下文中加上fesetenv(FE_DFL_DISABLE_SSE_DENORMS_ENV);就可以迫使CPU放弃使用非规范化浮点计算,提高性能。

我们用这种办法修改上面实验中的代码后,y+=0的效率就和y+=0.1f就一样了。甚至还比y+=0.1f更快了些,世界观又端正了不是么:) 修改后的代码如下。

很多老鸟都不知道这些浮点数基础知识

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/85828.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信