数学基础 — 线性代数之酉矩阵

数学基础 — 线性代数之酉矩阵酉矩阵是一个复矩阵 UUUU UUU IU UUU IU U 是矩阵 UUU 的共轭转置矩阵 即 UUU 的转置矩阵再取元素的共轭

大家好,欢迎来到IT知识分享网。

酉矩阵(Unitary Matrix)

酉矩阵是线性代数中一种重要的矩阵类型,特别在量子力学和信号处理等领域有广泛的应用。以下是酉矩阵的定义、性质以及使用和计算的例子。

1. 定义

酉矩阵是一个复矩阵 U U U ,满足以下条件:

U † U = U U † = I U^{\dagger} U = U U^{\dagger} = I UU=UU=I

其中:

  • U † U^{\dagger} U 是矩阵 U U U 的共轭转置矩阵,即 U U U 的转置矩阵再取元素的共轭。
  • I I I 是单位矩阵。

换句话说,矩阵 U U U 的逆矩阵等于它的共轭转置矩阵: U − 1 = U † U^{-1} = U^{\dagger} U1=U

2. 性质

  • 保持内积:酉矩阵保持向量的内积不变,即对于任意向量 v \mathbf{v} v w \mathbf{w} w,有 ⟨ U v , U w ⟩ = ⟨ v , w ⟩ \langle U\mathbf{v}, U\mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle Uv,Uw=v,w
  • 规范性:酉矩阵的列向量和行向量都是单位向量,并且相互正交。这意味着每列向量的模为1,且不同列向量的内积为0。
  • 特征值:酉矩阵的特征值的模长为1,即如果 λ \lambda λ U U U 的特征值,那么 ∣ λ ∣ = 1 |\lambda| = 1 λ=1
  • 稳定性:酉矩阵的模不变性在物理学中非常重要,特别是在量子力学中,它表示量子态的演化是稳定的、不改变量子态的整体性质。

3. 使用例子:量子计算中的酉矩阵

在量子计算中,酉矩阵常用于表示量子比特的状态演化。例如,一个量子比特的状态可以表示为向量 ψ = ( α β ) \mathbf{\psi} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} ψ=(αβ),其中 α \alpha α β \beta β 是复数,满足 ∣ α ∣ 2 + ∣ β ∣ 2 = 1 |\alpha|^2 + |\beta|^2 = 1 α2+β2=1

假设我们有一个量子门操作 U U U ,它是一个酉矩阵。比如,帕里矩阵(Hadamard gate)是一个常用的量子门:

H = 1 2 ( 1 1 1 − 1 ) H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} H=2
1
(1111)

应用这个量子门 H H H 到量子比特状态 ψ \mathbf{\psi} ψ 上,会得到新的量子状态:

ψ ′ = H ψ = 1 2 ( 1 1 1 − 1 ) ( α β ) = 1 2 ( α + β α − β ) \mathbf{\psi’} = H\mathbf{\psi} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \alpha + \beta \\ \alpha – \beta \end{pmatrix} ψ=Hψ=2
1
(1111)(αβ)=
2
1
(α+βαβ)

新的量子状态 ψ ′ \mathbf{\psi’} ψ 是通过酉矩阵 H H H 作用得到的,并且这个操作是保范的,即新状态的模仍然为1。

4. 计算例子:验证矩阵是否为酉矩阵

假设我们有以下矩阵 U U U

U = 1 2 ( 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ) U = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} U=21
1111111111111111

我们要验证 U U U 是否是一个酉矩阵。

第一步:计算矩阵 U U U 的共轭转置矩阵 U † U^{\dagger} U

U † = U T = 1 2 ( 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ) U^{\dagger} = U^{T} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} U=UT=21
1111111111111111

(因为矩阵 U U U 的元素都是实数,所以共轭转置矩阵就是转置矩阵)

第二步:计算 U † U U^{\dagger}U UU

U † U = 1 2 ( 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ) 1 2 ( 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ) U^{\dagger}U = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} UU=21
1111111111111111
21
1111111111111111

展开运算结果为:

U † U = 1 4 ( 4 0 0 0 0 4 0 0 0 0 4 0 0 0 0 4 ) = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) = I U^{\dagger}U = \frac{1}{4} \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = I UU=41
4000040000400004
=

1000010000100001
=
I

因为 U † U = I U^{\dagger}U = I UU=I,所以 U U U 是一个酉矩阵。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/116126.html

(0)
上一篇 2024-11-18 12:15
下一篇 2024-11-18 12:26

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信