大家好,欢迎来到IT知识分享网。
函数:
function [T,P,U,Q,B,W] = pls (X,Y,tol2)
% PLS Partial Least Squares Regrassion
%
% [T,P,U,Q,B,Q] = pls(X,Y,tol) performs particial least squares
regrassion
% between the independent variables, X and dependent Y as
% X = T*P’ + E;
% Y = U*Q’ + F = T*B*Q’ + F1;
%
% Inputs:
% X data matrix of independent variables
% Y data matrix of dependent variables
% tol the tolerant of convergence (defaut 1e-10)
%
% Outputs:
% T score matrix of X
% P loading matrix of X
% U score matrix of Y
% Q loading matrix of Y
% B matrix of regression coefficient
% W weight matrix of X
%
% Using the PLS model, for new X1, Y1 can be predicted as
% Y1 = (X1*P)*B*Q’ = X1*(P*B*Q’)
% or
% Y1 = X1*(W*inv(P’*W)*inv(T’*T)*T’*Y)
%
% Without Y provided, the function will return the principal
components as
% X = T*P’ + E
%
% Example: taken from Geladi, P. and Kowalski, B.R., “An example of
2-block
% predictive partial least-squares regression with simulated
data”,
% Analytica Chemica Acta, 185(1996) 19–32.
%{
x=[4 9 6 7 7 8 3 2;6 15 10 15 17 22 9 4;8 21 14 23 27 36 15
6;
10 21 14 13 11 10 3 4; 12 27 18 21 21 24 9 6; 14 33 22 29 31 38 15
8;
16 33 22 19 15 12 3 6; 18 39 26 27 25 26 9 8;20 45 30 35 35 40 15
10];
y=[1 1;3 1;5 1;1 3;3 3;5 3;1 5;3 5;5 5];
% leave the last sample for test
N=size(x,1);
x1=x(1:N-1,:);
y1=y(1:N-1,:);
x2=x(N,:);
y2=y(N,:);
% normalization
xmean=mean(x1);
xstd=std(x1);
ymean=mean(y1);
ystd=std(y);
X=(x1-xmean(ones(N-1,1),:))./xstd(ones(N-1,1),:);
Y=(y1-ymean(ones(N-1,1),:))./ystd(ones(N-1,1),:);
% PLS model
[T,P,U,Q,B,W]=pls(X,Y);
% Prediction and error
yp = (x2-xmean)./xstd * (P*B*Q’);
fprintf(‘Prediction error: %g/n’,norm(yp-(y2-ymean)./ystd));
%}
%
% By Yi Cao at Cranfield University on 2nd Febuary 2008
%
% Reference:
% Geladi, P and Kowalski, B.R., “Partial Least-Squares Regression:
A
% Tutorial”, Analytica Chimica Acta, 185 (1986) 1–7.
%
%
Input check
error(nargchk(1,3,nargin));
error(nargoutchk(0,6,nargout));
if nargin<2
Y=X;
end
tol = 1e-10;
if nargin<3
tol2=1e-10;
end
%
Size of x and y
[rX,cX] = size(X);
[rY,cY] = size(Y);
assert(rX==rY,’Sizes of X and Y mismatch.’);
%
Allocate memory to the maximum size
n=max(cX,cY);
T=zeros(rX,n);
P=zeros(cX,n);
U=zeros(rY,n);
Q=zeros(cY,n);
B=zeros(n,n);
W=P;
k=0;
% iteration loop if residual is larger than specfied
while norm(Y)>tol2 && k% choose the column of x has the
largest square of sum as t.
% choose the column of y has the largest square of sum as u.
[dummy,tidx] = max(sum(X.*X));
[dummy,uidx] = max(sum(Y.*Y));
t1 = X(:,tidx);
u = Y(:,uidx);
t = zeros(rX,1);
%
iteration for outer modeling until convergence
while norm(t1-t) > tol
w = X’*u;
w = w/norm(w);
t = t1;
t1 = X*w;
q = Y’*t1;
q = q/norm(q);
u = Y*q;
end
% update p based on t
t=t1;
p=X’*t/(t’*t);
pnorm=norm(p);
p=p/pnorm;
t=t*pnorm;
w=w*pnorm;
% regression and residuals
b = u’*t/(t’*t);
X = X – t*p’;
Y = Y – b*t*q’;
% save iteration results to outputs:
k=k+1;
T(:,k)=t;
P(:,k)=p;
U(:,k)=u;
Q(:,k)=q;
W(:,k)=w;
B(k,k)=b;
% uncomment the following line if you wish to see the
convergence
% disp(norm(Y))
end
T(:,k+1:end)=[];
P(:,k+1:end)=[];
U(:,k+1:end)=[];
Q(:,k+1:end)=[];
W(:,k+1:end)=[];
B=B(1:k,1:k);
例子:——————————————————————————————————————————————————————————
%%
Principal Component Analysis and Partial Least Squares
% Principal Component Analysis (PCA) and Partial Least Squares
(PLS) are
% widely used tools. This code is to show their relationship
through the
% Nonlinear Iterative PArtial Least Squares (NIPALS) algorithm.
%%
The Eigenvalue and Power Method
% The NIPALS algorithm can be derived from the Power method to
solve the
% eigenvalue problem. Let x be the eigenvector of a square matrix,
A,
% corresponding to the eignvalue s:
%
% $$Ax=sx$$
%
% Modifying both sides by A iteratively leads to
%
% $$A^kx=s^kx$$
%
% Now, consider another vectro y, which can be represented as a
linear
% combination of all eigenvectors:
%
% $$y=/sum_i^n b_ix_i=Xb$$
%
% where
%
% $$X=/left[x_1/,/,/, /cdots/,/,/, x_n /right]$$
%
% and
%
% $$b = /left[b_1/,/,/, /cdots/,/,/, b_n /right]^T$$
%
% Modifying y by A gives
%
% $$Ay=AXb=XSb$$
%
% Where S is a diagnal matrix consisting all eigenvalues.
Therefore, for
% a large enough k,
%
% $$A^ky=XS^kb/approx /alpha x_1$$
%
% That is the iteration will converge to the direction of x_1,
which is the
% eigenvector corresponding to the eigenvalue with the maximum
module.
% This leads to the following Power method to solve the eigenvalue
problem.
A=randn(10,5);
% sysmetric matrix to ensure real eigenvalues
B=A’*A;
%find the column which has the maximum norm
[dum,idx]=max(sum(A.*A));
x=A(:,idx);
%storage to judge convergence
x0=x-x;
%convergence tolerant
tol=1e-6;
%iteration if not converged
while norm(x-x0)>tol
%iteration to approach the eigenvector direction
y=A’*x;
%normalize the vector
y=y/norm(y);
%save previous x
x0=x;
%x is a product of eigenvalue and eigenvector
x=A*y;
end
% the largest eigen value corresponding eigenvector is y
s=x’*x;
% compare it with those obtained with eig
[V,D]=eig(B);
[d,idx]=max(diag(D));
v=V(:,idx);
disp(d-s)
% v and y may be different in signs
disp(min(norm(v-y),norm(v+y)))
%%
The NIPALS Algorithm for PCA
% The PCA is a dimension reduction technique, which is based on
the
% following decomposition:
%
% $$X=TP^T+E$$
%
% Where X is the data matrix (m x n) to be analysed, T is the so
called
% score matrix (m x a), P the loading matrix (n x a) and E the
residual.
% For a given tolerance of residual, the number of principal
components, a,
% can be much smaller than the orginal variable dimension, n.
% The above power algorithm can be extended to get T and P by
iteratively
% subtracting A (in this case, X) by x*y’ (in this case, t*p’)
until the
% given tolerance satisfied. This is the so called NIPALS
algorithm.
% The
data matrix with normalization
A=randn(10,5);
meanx=mean(A);
stdx=std(A);
X=(A-meanx(ones(10,1),:))./stdx(ones(10,1),:);
B=X’*X;
% allocate T and P
T=zeros(10,5);
P=zeros(5);
% tol for convergence
tol=1e-6;
% tol for PC of 95 percent
tol2=(1-0.95)*5*(10-1);
for k=1:5
%find the column which has the maximum norm
[dum,idx]=max(sum(X.*X));
t=A(:,idx);
%storage to judge convergence
t0=t-t;
%iteration if not converged
while norm(t-t0)>tol
%iteration to approach the eigenvector direction
p=X’*t;
%normalize the vector
p=p/norm(p);
%save previous t
t0=t;
%t is a product of eigenvalue and eigenvector
t=X*p;
end
%subtracing PC identified
X=X-t*p’;
T(:,k)=t;
P(:,k)=p;
if norm(X)break
end
end
T(:,k+1:5)=[];
P(:,k+1:5)=[];
S=diag(T’*T);
% compare it with those obtained with eig
[V,D]=eig(B);
[D,idx]=sort(diag(D),’descend’);
D=D(1:k);
V=V(:,idx(1:k));
fprintf(‘The number of PC: %i/n’,k);
fprintf(‘norm of score difference between EIG and NIPALS:
%g/n’,norm(D-S));
fprintf(‘norm of loading difference between EIG and NIPALS:
%g/n’,norm(abs(V)-abs(P)));
%%
The NIPALS Algorithm for PLS
% For PLS, we will have two sets of data: the independent X and
dependent
% Y. The NIPALS algorithm can be used to decomposes both X and Y so
that
%
% $$X=TP^T+E,/,/,/,/,Y=UQ^T+F,/,/,/,/,U=TB$$
%
% The regression, U=TB is solved through least sequares whilst
the
% decompsition may not include all components. That is why the
approach is
% called partial least squares. This algorithm is implemented in
the PLS
% function.
%%
Example: Discriminant PLS using the NIPALS Algorithm
% From Chiang, Y.Q., Zhuang, Y.M and Yang, J.Y, “Optimal
Fisher
% discriminant analysis using the rank decomposition”, Pattern
Recognition,
% 25 (1992), 101–111.
%
Three classes data, each has 50 samples and 4 variables.
x1=[5.1 3.5 1.4 0.2; 4.9 3.0 1.4 0.2; 4.7 3.2 1.3 0.2; 4.6 3.1 1.5
0.2;…
5.0 3.6 1.4 0.2; 5.4 3.9 1.7 0.4; 4.6 3.4 1.4 0.3; 5.0 3.4 1.5 0.2;
…
4.4 2.9 1.4 0.2; 4.9 3.1 1.5 0.1; 5.4 3.7 1.5 0.2; 4.8 3.4 1.6 0.2;
…
4.8 3.0 1.4 0.1; 4.3 3.0 1.1 0.1; 5.8 4.0 1.2 0.2; 5.7 4.4 1.5 0.4;
…
5.4 3.9 1.3 0.4; 5.1 3.5 1.4 0.3; 5.7 3.8 1.7 0.3; 5.1 3.8 1.5 0.3;
…
5.4 3.4 1.7 0.2; 5.1 3.7 1.5 0.4; 4.6 3.6 1.0 0.2; 5.1 3.3 1.7 0.5;
…
4.8 3.4 1.9 0.2; 5.0 3.0 1.6 0.2; 5.0 3.4 1.6 0.4; 5.2 3.5 1.5 0.2;
…
5.2 3.4 1.4 0.2; 4.7 3.2 1.6 0.2; 4.8 3.1 1.6 0.2; 5.4 3.4 1.5 0.4;
…
5.2 4.1 1.5 0.1; 5.5 4.2 1.4 0.2; 4.9 3.1 1.5 0.2; 5.0 3.2 1.2 0.2;
…
5.5 3.5 1.3 0.2; 4.9 3.6 1.4 0.1; 4.4 3.0 1.3 0.2; 5.1 3.4 1.5 0.2;
…
5.0 3.5 1.3 0.3; 4.5 2.3 1.3 0.3; 4.4 3.2 1.3 0.2; 5.0 3.5 1.6 0.6;
…
5.1 3.8 1.9 0.4; 4.8 3.0 1.4 0.3; 5.1 3.8 1.6 0.2; 4.6 3.2 1.4 0.2;
…
5.3 3.7 1.5 0.2; 5.0 3.3 1.4 0.2];
x2=[7.0 3.2 4.7 1.4; 6.4 3.2 4.5 1.5; 6.9 3.1 4.9 1.5; 5.5 2.3 4.0
1.3; …
6.5 2.8 4.6 1.5; 5.7 2.8 4.5 1.3; 6.3 3.3 4.7 1.6; 4.9 2.4 3.3 1.0;
…
6.6 2.9 4.6 1.3; 5.2 2.7 3.9 1.4; 5.0 2.0 3.5 1.0; 5.9 3.0 4.2 1.5;
…
6.0 2.2 4.0 1.0; 6.1 2.9 4.7 1.4; 5.6 2.9 3.9 1.3; 6.7 3.1 4.4 1.4;
…
5.6 3.0 4.5 1.5; 5.8 2.7 4.1 1.0; 6.2 2.2 4.5 1.5; 5.6 2.5 3.9 1.1;
…
5.9 3.2 4.8 1.8; 6.1 2.8 4.0 1.3; 6.3 2.5 4.9 1.5; 6.1 2.8 4.7 1.2;
…
6.4 2.9 4.3 1.3; 6.6 3.0 4.4 1.4; 6.8 2.8 4.8 1.4; 6.7 3.0 5.0 1.7;
…
6.0 2.9 4.5 1.5; 5.7 2.6 3.5 1.0; 5.5 2.4 3.8 1.1; 5.5 2.4 3.7 1.0;
…
5.8 2.7 3.9 1.2; 6.0 2.7 5.1 1.6; 5.4 3.0 4.5 1.5; 6.0 3.4 4.5 1.6;
…
6.7 3.1 4.7 1.5; 6.3 2.3 4.4 1.3; 5.6 3.0 4.1 1.3; 5.5 2.5 5.0 1.3;
…
5.5 2.6 4.4 1.2; 6.1 3.0 4.6 1.4; 5.8 2.6 4.0 1.2; 5.0 2.3 3.3 1.0;
…
5.6 2.7 4.2 1.3; 5.7 3.0 4.2 1.2; 5.7 2.9 4.2 1.3; 6.2 2.9 4.3 1.3;
…
5.1 2.5 3.0 1.1; 5.7 2.8 4.1 1.3];
x3=[6.3 3.3 6.0 2.5; 5.8 2.7 5.1 1.9; 7.1 3.0 5.9 2.1; 6.3 2.9 5.6
1.8; …
6.5 3.0 5.8 2.2; 7.6 3.0 6.6 2.1; 4.9 2.5 4.5 1.7; 7.3 2.9 6.3 1.8;
…
6.7 2.5 5.8 1.8; 7.2 3.6 6.1 2.5; 6.5 3.2 5.1 2.0; 6.4 2.7 5.3 1.9;
…
6.8 3.0 5.5 2.1; 5.7 2.5 5.0 2.0; 5.8 2.8 5.1 2.4; 6.4 3.2 5.3 2.3;
…
6.5 3.0 5.5 1.8; 7.7 3.8 6.7 2.2; 7.7 2.6 6.9 2.3; 6.0 2.2 5.0 1.5;
…
6.9 3.2 5.7 2.3; 5.6 2.8 4.9 2.0; 7.7 2.8 6.7 2.0; 6.3 2.7 4.9 1.8;
…
6.7 3.3 5.7 2.1; 7.2 3.2 6.0 1.8; 6.2 2.8 4.8 1.8; 6.1 3.0 4.9 1.8;
…
6.4 2.8 5.6 2.1; 7.2 3.0 5.8 1.6; 7.4 2.8 6.1 1.9; 7.9 3.8 6.4 2.0;
…
6.4 2.8 5.6 2.2; 6.3 2.8 5.1 1.5; 6.1 2.6 5.6 1.4; 7.7 3.0 6.1 2.3;
…
6.3 3.4 5.6 2.4; 6.4 3.1 5.5 1.8; 6.0 3.0 4.8 1.8; 6.9 3.1 5.4 2.1;
…
6.7 3.1 5.6 2.4; 6.9 3.1 5.1 2.3; 5.8 2.7 5.1 1.9; 6.8 3.2 5.9 2.3;
…
6.7 3.3 5.7 2.5; 6.7 3.0 5.2 2.3; 6.3 2.5 5.0 1.9; 6.5 3.0 5.2 2.0;
…
6.2 3.4 5.4 2.3; 5.9 3.0 5.1 1.8];
%Split data set into training (1:25) and testing (26:50)
idxTrain = 1:25;
idxTest = 26:50;
%
Combine training data with normalization
X = [x1(idxTrain,:);x2(idxTrain,:);x3(idxTrain,:)];
% Define class indicator as Y
Y = kron(eye(3),ones(25,1));
% Normalization
xmean = mean(X);
xstd = std(X);
ymean = mean(Y);
ystd = std(Y);
X = (X – xmean(ones(75,1),:))./xstd(ones(75,1),:);
Y = (Y – ymean(ones(75,1),:))./ystd(ones(75,1),:);
% Tolerance for 90 percent score
tol = (1-0.9) * 25 * 4;
% Perform PLS
[T,P,U,Q,B] = pls(X,Y,tol);
% Results
fprintf(‘Number of components retained: %i/n’,size(B,1))
% Predicted classes
X1 = (x1(idxTest,:) –
xmean(ones(25,1),:))./xstd(ones(25,1),:);
X2 = (x2(idxTest,:) –
xmean(ones(25,1),:))./xstd(ones(25,1),:);
X3 = (x3(idxTest,:) –
xmean(ones(25,1),:))./xstd(ones(25,1),:);
Y1 = X1 * (P*B*Q’);
Y2 = X2 * (P*B*Q’);
Y3 = X3 * (P*B*Q’);
Y1 = Y1 .* ystd(ones(25,1),:) + ymean(ones(25,1),:);
Y2 = Y2 .* ystd(ones(25,1),:) + ymean(ones(25,1),:);
Y3 = Y3 .* ystd(ones(25,1),:) + ymean(ones(25,1),:);
% Class is determined from the cloumn which is most close to
1
[dum,classid1]=min(abs(Y1-1),[],2);
[dum,classid2]=min(abs(Y2-1),[],2);
[dum,classid3]=min(abs(Y3-1),[],2);
bar(1:25,classid1,’b’);
hold on
bar(26:50,classid2,’r’);
bar(51:75,classid3,’g’);
hold off
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/10778.html